

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :Electrical Measurements (19EE0213)

Course & Branch: B.Tech–EEE

Year &Sem: III-B.Tech& I-Sem.

Regulation: R19

<u>UNIT –I</u>

MEASURING INSTRUMENTS

1. (a) Define the terms "Indicating instruments", "Recording instruments" and integ Instruments". Give examples of each case.	rating [L1][CO1][6M]
(b) List the advantages and dis advantages of PMMC type instruments.	[L2][CO1][6M]
 2. (a) Explain the construction and working of permanent magnet moving coil instruction. (b) A moving coil instrument gives a full -scale deflection of 10mA when the porterminals is 100mV. Calculate shunt resistance for a full -scale deflection con 100 A. 3. Design an Aryton shunt to provide an ammeter with the current ranges 1 A, 5 A a The basic meter resistance is 50 ohm and full scale deflection current is 1 mA 	[L2[CO1][6M] tential across its responding to [L3][CO1][6M]
4. What are the different types of damping systems? Explain them with neat diagram	m. [L1][CO1][12M]
5. (a) How the electrical measuring instruments are classified?	[L1][CO1][6M]
(b) Discuss about errors and compensations of measuring instruments.	[L2][CO1][6M]
6 .(a)Derive an expression for the Deflecting torque in MI type instruments	[L3][CO1][6M]
(b) List the advantages & disadvantages of MI type instruments	[L1][CO1][6M]
7. (a) Describe the construction and working of attraction type MI instrument?	[L2[CO1]][6M]
(b) A moving coil instrument has a resistance of 10 ohm and gives a full scale def. When carrying 50mA. Show how it can be adopted to measure voltage upto 75 and current of 100 A.	
8. How do you extend the range of an Ammeter? Explain Aryton Shunt with diagra	m. [L1][CO1][12M]
9. Explain briefly Quadrant type Electrostatic voltmeter meter. Explain Heterostatic Idiostatic Connections	c or [L2][CO1][12M]
10. Explain the working of Kelvin Absolute Voltmeter. What are the advantages and disadvantages of Electrostatic Instruments?	d [L2][CO1][12M]
ELECTRICAL MEASUREMENTS	Page 1

QUESTION BANK 2021

<u>UNIT-II</u>

DC BRIDGES and AC BRIDGES

1. (a) Draw the circuit diagram of a Wheatstone bridge and derive the condition for balance.		
	[L4] [CO2] [6M]	
(b) The four arms of Wheatstone bridge as follows: $AB = 5K\Omega$; $BC = ?$; $CD = DA = 2K\Omega$. What should be the resistance in the arm for no current through Galvanometer?	n the [L4] [CO2] [6M]	
2. Explain how insulation resistance of a cable can be measured with a help of Los method?	ss of charge [L2] [CO2] [12M]	
 (a) Draw the circuit of a Kelvin's double bridge used for measurement of low re Derive the condition for balance. 	sistances. [L4] [CO2] [6M]	
(b) Explain classification of resistances.	[L2] [CO2] [6M]	
 4. An ac bridge circuit working at 1 KHz has its arms as follows: Arm AB: 0.2 μf capacitance Arm BC: 500 ohm resistor Arm CD: unknown impedance Arm DA: 300 ohm resistor in parallel with 0.1μf capacitor Find R and L or C constants of the Arm CD considering it as a series circuit 	t. [L4] [CO2] [12M]	
5. Explain how Wien's bridge can be used for experimental determination of freque the expression for frequency in terms of bridge parameters. [L2]	ency. Derive 2, L4] [CO2] [12M]	
6. (a) Explain the features of De-Sauty's Bridge with a neat sketch.	[L2] [CO2] [6M]	
(b) List the advantages and disadvantages of Maxwell's Bridge.	[L1] [CO2] [6M]	
7. Explain the construction and working of Anderson Bridge with suitable diagrams	s. [L2] [CO2] [12M]	
8. Derive the general balance equation of DC and AC Bridges with suitable diagram balance condition equations in polar and Rectangular forms?	ns. What are the [L4] [CO2] [12M]	
9. Explain substitution method and potentiometer method for measuring medium re	esistances. [L2] [CO2] [12M]	
10. Explain how the inductance is measured in terms of known capacitance using N	/axwell's bridge [L2] [CO2] [12M]	

QUESTION BANK 2021

<u>UNIT – III</u>

MEASUREMENT OF POWER AND ENERGY

1. Explain the constructional details of electro dynamometer type wattmeter with	a neat sketch. [L2][CO3][12M]
2. (a) Derive the torque equation for electro dynamo meter type wattmeter.	[L4] [CO3] [6M]
(b) Explain stray magnetic field errors in electro dynamometer type wattmeter.	[L2][CO3][6M]
3. (a) A single phase kilo watt hour meter makes 500 revolutions per kilo watt hour on testing as making 40 revolutions in 58.1 seconds at 5KW full load. Find therefore,	
(b) Explain driving system, moving system and braking system in a single phase type energy meter.	e induction [L2] [CO3] [6M]
4. (a) Explain the measurement of LPF and UPF.	[L2] [CO3] [6M]
(b) Explain creeping and its compensation in 1-Ø induction type energy meter.	[L2][CO3][6M]
5. (a) Explain the friction compensation in single phase induction type Energy Meter	er. [L2] [CO3] [6M]
(b). A 50A, 230 V meter on full load test makes 61 revolutions in 37 seconds. disc speed is 520 revolutions per Kwh, find the percentage error.	If the normal [L4] [CO3] [6M]
6. Explain the construction of Two element and Three element dynamometer watth	neter. [L2] [CO3] [12M]
7. (a) Explain errors caused by vibration of moving system electro dynamometer ty wattmeter.	vpe [L2] [CO3] [6M]
(b) Explain the advantages and disadvantages of single phase Induction type Ener	rgy meter. [L2] [CO3] [6M]
8. Explain with a neat sketch the construction and working of a single-phase Dynan Wattmeter.	nometer type [L2] [CO3] [12M]
9. a) Explain the working of 2 element energy meter with a neat diagram.	[L2] [CO3] [6M]
b) Discuss the errors of single phase energy meter.	[L2] [CO3] [6M]
10. With a neat construction diagram, explain the operation of single phase induction Meters	on type energy [L2] [CO3] [12M]

ELECTRICAL MEASUREMENTS

ELECTRICAL MEASUREMENTS

INSTRUMENT TRANSFORMERS AND TRANSDUCER			
1. (a) Discuss C T and P	Т.		[L2] [CO4] [6M]
(b) Why secondary of C	C.T should not be open?		[L1] [CO4] [6M]
2. Explain the constructio	n of (i) Current transformer	(ii) Potential transformer.	[L2] [CO4] [12M]
3. Draw the phasor diag errors.	ram of PT. Derive the express	sion for its transformation r	atio and phase angle [L3] [CO4] [12M]
4. Draw the equivalent c	circuit and phasor diagram of	CT. Derive its transformati	on ratio. [L2] [CO4] [12M]
5. From the fundamentals potential transformer.	, derive the expressions for ac	ctual transformation ratio a	nd phase angle of the [L3] [CO4] [12M]
6. (a) What are the param	eters to be considered in selection	cting a transducer for a par	ticular application? [L1] [CO4] [6M]
(b) Describe the workir	ng principle of thermocouples		[L2] [CO4] [6M]
7. (a) Describe the constru	action and working of LVDT	with a neat schematic	[L2] [CO4] [6M]
(b) Explain the advantag	ges of electrical transducer		[L2] [CO4] [6M]
8. (a) Discuss in detail ab	out Thermistors.		[L2] [CO4] [6M]
(b) Explain about induc	tive displacement transducers	5.	[L2] [CO4] [6M]
9 Describe the method for measurement of temperature with use of			
a) RTD	b) Thermistors	c) IC Sensor	[L2] [CO4] [12M]
	r? Explain classification of tra ple and operation of capacitiv		[L1] [CO4] [6M] splacement [L1] [CO4] [6M]

<u>UNIT –IV</u>

<u>UNIT – V</u>

MAGNETIC MEASUREMENTS

1. Describe the construction and working of a moving coil ballistic galvanometer.	[L4] [CO5] [12M]	
2. (a) Explain the construction and working principle of Flux meter with a neat dia	agram. [L2] [CO5] [6M]	
(b) Determine leakage factor with flux meter.	[L1] [CO5] [6M]	
3 Explain the determination of B -H loop using method of reversals.	[L2] [CO5] [12M]	
4. (a) How do you measure leakage factor using Flux meter.	[L1] [CO5] [6M]	
(b) (b) compare flux meter and Ballistic Galvanometer	[L2] [CO5] [6M]	
5. Describe the method for determination of B.H curve of a magnetic material using	ng:	
(i) Method of Reversals (ii) Six point method.	[L2] [CO5] [6M]	
6. Describe briefly how the following measurements can be made with the use of CRO		
(i) Frequency. (ii) Phase angle. (iii) voltage.	[L2] [CO6] [12M]	
7. (a) List the advantages & applications of C R O.	[L1] [CO6] [6M]	
(b) Draw a neat figure and explain the working of a C R O.	[L1, L2] [CO6] [6M]	
8. (a) Explain the functions of time base generator in a CRO	[L2] [CO6] [6M]	
(b) Draw the Lissajous patterns.	[L4] [CO6] [6M]	
9. (a) Discuss how the measurement of frequency and phase is done with the help of CRO.		
	[L2] [CO6] [6M]	

(b) Describe the functions of attenuators in CRO.	[L2] [CO6] [6M]
10. Explain the internal structure of CRT with a neat diagram	[L2] [CO6] [12M]

Prepared by: R. Lakshmi